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ABSTRACT

Monte Carlo particle transport applications are often written in low-level languages (C/C++)
for optimal performance on clusters and supercomputers. However, this development ap-
proach often sacrifices straightforward usability and testing in the interest of fast application
performance. To improve usability, some high-performance computing applications employ
mixed-language programming with high-level and low-level languages. In this study, we
consider the benefits of incorporating an interactive Python interface into a Monte Carlo ap-
plication. With PyMercury, a new Python extension to the Mercury general-purpose Monte
Carlo particle transport code, we improve application usability without diminishing perfor-
mance. In two case studies, we illustrate how PyMercury improves usability and simplifies
testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the
value of interactive Python for Monte Carlo particle transport applications. In the future,
we expect interactive Python to play an increasingly significant role in Monte Carlo usage
and testing.

Key Words: Monte Carlo, Python, Neutron transport, Parallel programming, Scientific com-
puting, Computer modeling

1. INTRODUCTION AND MOTIVATION

Monte Carlo particle transport applications play a crucial role in studying health physics, nuclear
reactor shielding, and United States homeland security [1]. For optimal performance on clusters
and supercomputers, Monte Carlo applications have traditionally been implemented in low-
level languages such as C, C++, and Fortran [2]. In comparison to these low-level languages,
high-level scripting languages such as Python [3] offer simplified syntax for improved usability.
However, scripting languages are less efficient than low-level languages such as C, C++, and
Fortran for scientific computation. Thus, the decision to implement a Monte Carlo application
in a low-level language typically requires sacrificing straightforward usability for fast application
performance.
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To avoid compromising between usability and performance, mixed-language programming mod-
els can combine the simplicity of a scripting language with the fast performance of a low-level,
compiled language. A study of mixed-language programming shows that extending C++ code
with Python does not add to overhead, so long as the C++ code is retained for performance-
critical computation [4]. We illustrate the usability benefits of C++/Python mixed-language
programming for Monte Carlo applications with PyMercury, a Python extension to the Mer-
cury [5] [6] general-purpose Monte Carlo particle transport code.

Mercury is written primarily in C++, and it uses Message Passing Interface (MPI) [7] to scale to
thousands of processors on scientific computing clusters. PyMercury is an easy-to-use, interac-
tive Python interface for use during Mercury runtime. We demonstrate the usability benefits of
PyMercury with a case study in Section 4. In addition, PyMercury demonstrates how Python
interfaces can simplify the process of developing and testing Monte Carlo applications. We
demonstrate these benefits with a case study in Section 5. While providing these usability and
development benefits, Mercury retains its fast C++ based numerical computation code during
PyMercury usage. Thus, the interactive PyMercury runtime environment improves runtime
usability without contributing additional performance overhead.

2. RELATED WORK

Several high-performance computing applications have utilized mixed-language programming to
combine Python with C, C++, or Fortran. These applications have succeeded in improving
usability without necessarily degrading fast, scalable application performance. Python inter-
faces for runtime control have enhanced the usability of inertial confinement fusion [8], neuro-
science [9], cosmology [10], and computer vision [11] parallel applications. High-level Python
scripts also provide simple syntax for launching parallel applications for bioinformatics [12] and
astrophysics [13].

Despite the success of mixed-language programming in some scientific application areas, the
Monte Carlo particle transport community has been slow to adopt mixed-language program-
ming. Two notable exceptions are Monte Carlo applications FLUKA and Geant4, both of which
use some Python code. The FLUKA [14] Monte Carlo particle transport code is written in C++,
Fortran, and Python. FLUKA offers Python-based runtime graphical debugging and data anal-
ysis tools [15]. In addition, the Geant4 particle transport code offers a Python extension with
interactive runtime support called Geant4Py [16]. Together with Geant4Py, PyMercury leads
the movement toward text-based, interactive Python interfaces for general-purpose Monte Carlo
particle transport simulations.

3. PYMERCURY DEVELOPMENT APPROACH

In developing PyMercury, we considered a variety of strategies for connecting Python and C++
code. All of these strategies involve the Python/C API [17], which is a platform for extending C
or C++ code with Python. With the Python/C API, developers can map any C or C++ data
structure or function to any Python object or function.

Tools such as Boost.Python [18] and Simple Wrapper Interface Generator (SWIG) [19] fa-
cilitate rapid development of Python wrapper code for C++ data structures and functions.
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Boost.Python and SWIG parse C++ header files and subsequently create Python wrapper
functions for C++ data and functions. Both of these tools create code underpinned by the
Python/C API. Nomenclature from C++ header files is reflected in the naming of the Python
wrapper functions [20].

The Mercury C++ code offers a broad variety of features in order to support general-purpose
Monte Carlo particle transport modeling. We expect data analysis, debugging, and validation
to be three of the most common uses for PyMercury. Therefore, to make PyMercury intuitive
for users, we have customized the Python nomenclature to ensure that the features relevant to
data analysis, debugging, and validation are easy to use. This customization requires flexibility
between the function and object nomenclature used in C++ and in Python.

To support an increasingly broad variety of particle transport problems, Mercury is under active
development. In the development process, the Mercury C++ data structures and functions
are sometimes changed significantly. Thus, if Boost.Python or SWIG were used for creating
C/Python API code, the user-facing Python objects and function names would change whenever
C++ data structures or function names are modified. To provide a consistent Python user
interface, minor changes to C++ nomenclature between Mercury versions should not be reflected
in Python function and object naming.

In contrast to Boost.Python and SWIG, directly programming the Python/C API allows for
increased flexibility between the C++ code and Python function and data structure nomen-
clature. To maintain a consistent Python interface as the Mercury C++ code evolves and to
provide a customized, intuitive interface, we directly programmed the Python/C API without
using SWIG or Boost.Python to develop PyMercury.

4. CASE STUDY I: ENERGY DEPOSITION

In the radiologic sciences, Monte Carlo particle transport software is often used to analyze
applications such as radiation therapy. A 2001 study by Yoriyaz et al. used Monte Carlo N-
Particle (MCNP), a well-known Monte Carlo code, to model energy deposition in a human from
a photon beam [21]. With tallies, or running totals of particle interactions, the study tracked
energy deposition due to photons in the computationally modeled human kidney. For radiation
treatment applications, Yoriyaz et al. sought to use MCNP to provide “timely patient-specific
dose information to the physician and medical physicist.”

While the study succeeded in modeling energy deposition, the study mentioned a difficult and
hard-to-learn user interface as a major downside to MCNP usage. Yoriyaz et al. suggest that the
interface must be operated “by a person familiar with programming and knowledgeable about
the program structure.” The study concluded that further MCNP interface development efforts
were necessary for physicians and medical physicists to effectively use MCNP. It should be noted
that, although the photon energy deposition study was conducted in 2001, the current version
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of MCNP also lacks runtime tally access [22].

If the energy deposition study were conducted with Mercury, medical professionals could exploit
runtime access to tallies through the PyMercury interactive interface. For example, with the
PyMercury code in Figure 1, a medical professional could run Mercury until a user-specified
threshold of energy deposition has been reached. To accomplish this, the code in Figure 1
accesses the energy deposition tally object with the PyMercury call
mc.tally.tal["EnergyDeposition"]. (Note that all PyMercury functions begin with “mc” to
denote Monte Carlo.) Then, the code uses the tally object’s getValue() function to request the
total energy deposited by neutrons in the kidneys of the computer-simulated human figure. With
the interactive Python interface, this code can be injected between iterations of the Mercury
particle transport computation. For medical professionals, code like this could simplify the
process of analyzing energy deposition in a computationally-modeled human figure.

energyTally = mc.tally.tal["EnergyDeposition"]

#Call at each cycle of Mercury execution
if energyTally.getValue(Particle="Neutron", Cell="Kidneys") > 1e-6:

print "Neutron energy deposition to the kidneys reached threshold."

Figure 1: PyMercury code for tracking neutron energy deposition.

In short, this case study demonstrates that Python interactive runtime interfaces can improve the
usability of the Monte Carlo code. In addition, since runtime tally access is not computationally
intensive, the PyMercury Python interface offers improved usability without contributing to
performance overhead.

5. CASE STUDY II: GEOMETRY VALIDATION

Many Monte Carlo particle transport applications use highly-tuned code for geometric calcula-
tions [23] [2]. In the interest of fast application performance, optimizing the geometry code is
often of high priority in Monte Carlo code development. In addition to being critical to perfor-
mance, geometry code can also be difficult to debug and to validate. A study of geometric setup
tools describes the geometric setup as “typically the most challenging and error prone portion
of a Monte Carlo model” [24]. With PyMercury, we demonstrate the applicability of Python
interfaces to validating geometry calculations in a Monte Carlo code.

In Mercury, a three-dimensional problem space is represented with combinatorial geometry (CG)
spatial volumes, or cells [24]. Geometric setups for nuclear reactors, particle accelerators, and
human figures can be represented in Mercury as collections of CG cells. For fast parallel perfor-
mance, CG cell volume calculations are performed with highly optimized analytical calculations
or with adaptive mesh refinement (AMR) [25].

When new CG surfaces are implemented in Mercury, a “sanity check” volume calculation can aid
in validating the analytic or AMR volume calculations for the new surfaces. To be meaningful,
the “sanity check” calculation must be performed independently of the AMR code. Some tools
exist for testing geometry setups, such as VisIt [25] and Form Z to Monte Carlo (FZ2MC) [24].
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These tools can provide visual representations of geometry setups in Monte Carlo simulations.
However, testing and debugging with visual tools can be difficult to automate and often requires
time-consuming human input. While visual tools can be useful for fixing incessant bugs in
Monte Carlo geometry setups, many geometry bugs can also be identified with automated tests
implemented with PyMercury. PyMercury offers all the tools necessary for creating simple,
automated calculations with which to validate the analytical or AMR volume calculation code.

Figure 2: Hyberbolic Paraboloid calculated in Mercury; visualized in VisIt [25].

The Mercury development team has recently expanded Mercury’s library of CG cell shapes.
Mercury now supports quadric surfaces such as the hyperbolic paraboloid shown in Figure 2.
PyMercury is used to validate Mercury’s new, highly-optimized volume calculations for quadric
surfaces.

Mercury uses an analytical formula to calculate the volume of a hyperbolic paraboloid. The exact
volume of the hyperbolic paraboloid that we will study, can be computed from the integral:

ExactV olume =
∫ 2

−2

∫ √x2+2

−
√
x2+2

(x2 − z2 + 2)dzdx

= 4 ∗ (3 ∗
√

6 +ArcSinh(
√

2))
= 33.97874025
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The analytical calculation finds the exact volume of the cell to be 33.97874025. We use PyMer-
cury to implement two “sanity check” volume calculation methods, with which we verify the
correctness of the analytical volume calculation. The “sanity check” calculations each use Monte
Carlo volume calculation methods, one based on point sampling and another based on ray trac-
ing.

5.1 Monte Carlo Volume Calculation Method: Point-Sampling

With PyMercury, a simple Monte Carlo volume calculation with point sampling can be imple-
mented in just a few lines of code. To perform this calculation, we begin with a 3D space in
Mercury containing a shape, in this case the hyperbolic paraboloid in Figure 2. We then draw
a bounding box around the hyperbolic paraboloid and sample random points in the box. An
example bounding box for the hyperbolic paraboloid is: (−2, 0,−

√
6) to (2, 6,

√
6), which has a

volume of

BoundingBoxV olume = 48
√

6
ExactV olume = 33.97874025

V olumeFraction = ExactV olume/BoundingBoxV olume = 0.288995

To determine whether a point is inside or outside the paraboloid, we use two PyMercury func-
tions. First, we use the PyMercury function mc.geometry.cell["paraboloid"] to access
the Python object corresponding to the CG cell “paraboloid,” which is shown in Figure 2.
Then, given a random point (x, y, z), we can determine which CG cell contains the point. If
(x, y, z) is inside “paraboloid,” then the function mc.geometry.locateCoordinate(x,y,z) re-
turns the same object as was returned by mc.geometry.cell["paraboloid"]. We test whether
mc.geometry.locateCoordinate and mc.geometry.cell returned the same object by compar-
ing the names of the two objects. If the names are the same, then the given sample point is
inside the hyperbolic paraboloid. Otherwise, the sample point is not inside the paraboloid. We
then divide the number of points found to be inside the shape by the total number of points
sampled.

Figure 3 shows an example implementation of this volume calculation with PyMercury. Since this
Python-based calculation is independent of the Mercury volume calculation code, the calculation
can always be used for validation of new Mercury volume calculations.
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testCell = mc.geometry.cell["paraboloid"] #get geometric cell by name
BoxVolume = (xmax-xmin)*(ymax-ymin)*(zmax-zmin) #draw a bounding box
pointsFoundInCell = 0 #number of points found inside testCell

for i in xrange(numOfPoints):
x = xmin + (xmax - xmin)*random.random()
y = ymin + (ymax - ymin)*random.random()
z = zmin + (zmax - zmin)*random.random()

#determine which cell the randomly generated coordinates are inside
cellFoundByCoordinates = mc.geometry.locateCoordinate(x,y,z)
if cellFoundByCoordinates.name == testCell.name:

pointsFoundInCell += 1

#volume of cell as determined by Monte Carlo trial.
volume = (BoxVolume * pointsFoundInCell)/(numOfPoints)

Figure 3: Point Sampling Monte Carlo Volume Calculation with PyMercury.

To statistically evaluate the convergence of the point-sampling calculation, we vary the number
of points sampled or rays traced, n, within the cell’s bounding box. We run 1000 trials for five
values of n: 101, 102, 103, 104, and 105. For this test, we fix the processor count at 64 processors.

The mean of the point-sampling calculations converges to the analytically-calculated volume of
33.97874025. As shown in Figure 4, the standard deviation, σ, is proportional to 1/

√
n. The

standard deviation is approximately σ = 53/
√
n.

n samples mean σ σ
√
n |exact−mean|

1e+01 33.920534 16.6517 52.6573 5.8206e-02
1e+02 34.153333 5.4193 54.1932 1.7459e-01
1e+03 34.022119 1.6622 52.5621 4.3379e-02
1e+04 33.965413 0.5318 53.1824 1.3328e-02
1e+05 33.976479 0.1653 52.2728 2.2615e-03

Figure 4: Convergence for Point-Sampling Volume Calculation.

5.2 Monte Carlo Volume Calculation Method: Ray Tracing

To perform a volume calculation with ray tracing, we begin with the same setup as was used in
the point-sampling volume calculation. However, instead of sampling random points, we launch
rays from random points along one face of the bounding box of a CG cell towards the opposite
face. We then calculate the fraction of the path length that was within the CG cell, compared
to the total path length traveled. This fraction approximates the volume fraction of the CG cell
within its bounding box.

The ray-tracing volume calculation is easily enabled with PyMercury, which provides access to
the function nearestFacet(cell, x,y,z, α, β, γ). This function returns the distance to the
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nearest surface, given a ray with point coordinate (x, y, z) heading in the direction (α, β, γ). We
sample n rays from the zmin face of the CG cell’s bounding box, which is: (xmin, ymin, zmin)
to (xmax, ymax, zmax).

The Python code in Figure 5 is an example implementation of a ray-tracing volume calcu-
lation. This code demonstrates how concisely a ray-tracing based volume calculation can be
implemented with PyMercury.

testCell = mc.geometry.cell["paraboloid"] #get geometric cell by name
BoxVolume = (xmax-xmin)*(ymax-ymin)*(zmax-zmin)
for i in xrange(numOfRays):

#generate a random coordinate (x,y,z) on the zmin face of the bounding box.
x = xmin + (xmax - xmin)*random.random()
y = ymin + (ymax - ymin)*random.random()
z = zmin
CurrentCell = mc.geometry.locateCoordinate(x, y, z)

while z < zmax:
(distance, surf, AdjacentCell) = mc.geometry.nearestFacet(CurrentCell, x,y,z, alpha, beta, gamma)
if CurrentCell == testCell:

PathLength += min(distance, zmax - z)
z += distance
CurrentCell = AdjacentCell

TotalPathLength = n * (zmax - zmin)
Volume = BoxVolume * PathLength / TotalPathLength

Figure 5: Ray-Tracing Monte Carlo Volume Calculation with PyMercury.

To evaluate the convergence of the ray-tracing volume calculation, we use essentially the same
method that was used in Section 5.1 to evaluate the convergence of the point-sampling calcula-
tion. However, instead of varying the number of points, we vary the number of rays, n.

Figure 6 shows that the mean converges to the analytically-calculated volume of 33.97874025.
As in the point-sampling calculation, the standard deviation for the ray-tracing calculation, σ,
is proportional to 1/

√
n.

In the ray-tracing calculation, the standard deviation is approximately σ = 35/
√
n, for n rays.

For the point-sampling calculation, the standard deviation is roughly σ = 53/
√
n, for n points.

Therefore, for a number of rays n, the result is has a smaller standard deviation than for the
same number of points n. However, given a sufficient number of rays or points, both volume
calculation methods consistently converge to the analytically-calculated volume, 33.97874025.
Thus, the point-sampling and ray-tracing calculations confirm that the Mercury analytical vol-
ume calculation works properly for the new hyperbolic paraboloid CG cell. These “sanity check”
volume calculations will be used to validate analytical and AMR volume calculations for future
additions to the Mercury CG cell library.
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n samples mean σ σ
√
n |exact−mean|

1e+01 33.951046 11.5092 36.3953 2.7694e-02
1e+02 33.755955 3.4363 34.3635 2.2278e-01
1e+03 33.954917 1.1544 36.5049 2.3823e-02
1e+04 33.974577 0.3678 36.7823 4.1634e-03
1e+05 33.981827 0.1099 34.7668 3.0864e-03

Figure 6: Convergence for Ray-Tracing Volume Calculation.

To summarize, PyMercury demonstrates that Python interfaces can simplify the testing of
geometry-related components of Monte Carlo codes. Geometry code is critical to the correct-
ness of Monte Carlo particle transport applications, and we expect Python interfaces to play an
increasingly significant role in the geometry validation process of numerous Monte Carlo codes.
In addition to being used for debugging and validating geometry code, interactive Python code
and Python test scripts can potentially replace the majority of low-level code currently used for
testing Monte Carlo particle transport software.

6. CONCLUSIONS

Interactive Python interfaces are increasingly common in parallel scientific applications that
are primarily written in C, C++, and Fortran. Mixed-language codes using Python and C++
can combine the performance advantages of C++ with the simplicity of the Python syntax.
However, the Monte Carlo particle transport community has been slow to adopt mixed-language
programming models that combine low-level and high-level languages.

With PyMercury, we showed that connecting a Python interface with a Monte Carlo applica-
tion can improve usability and simplify the process of validating the Monte Carlo code. As
we demonstrated in Case Study I, PyMercury improves application usability during Mercury
runtime. As shown in Case Study II, PyMercury also simplifies the process of debugging and
validating the Mercury code. PyMercury provides these benefits without contributing to per-
formance overhead.

In summary, PyMercury illustrates the benefits of interactive Python and mixed-language pro-
gramming for Monte Carlo particle transport applications. In the future, we expect mixed-
language programming with interactive Python and a low-level language to be increasingly
common among Monte Carlo applications.
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